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1 Introduction 
 

In report KD 35 (ref. 1) a method is given for the design of a windmill rotor. In chapter 6 of 

KD 35 a simple procedure is given for the determination of the Cp- and Cq- curves if only 

the starting torque coefficient, Cq start, the maximum power coefficient, Cp max at the optimum 

tip speed ratio opt and the unloaded tip speed ratio unl are known. The first part of the Cq- 

curve is found by drawing a S-shaped curve in between the point for Cq start and Cq max. The 

direction of this curve at  = 0, so at Cq start, must be taken horizontal. However this procedure 

gives only a very rough impression of the shape of this part of the Cq- curve. The real curve 

depends on the kind of rotor which is designed and of the kind of airfoil which is used. The 

shape of the real Cq- curve for low values of  is important for the determination of the 

starting behaviour of the windmill rotor with a load like a PM-generator which has a certain 

“sticking torque”. In this report (KD 97) a method is given to determine Cq for values of  in 

between  = 0 and about  = ½ opt. 

 

2 Determination of Cq for low values of  

 

Formula 6.12 of KD 35 gives the starting torque coefficient Cq start for a blade with a constant 

chord c and a constant blade angle . If the blade angle is not constant formula 6.12 can be 

used with some inaccuracy if the average blade angle is used. If the chord is not constant 

formula 6.12 can not be used but the blade has to be divided into some sections and the 

contribution of each section to the starting torque has to be calculated for the average chord 

and the average blade angle of each section.  

 If the rotor is rotating, figure 6.4 of KD 35 is no longer valid because now the blade 

itself has also a certain velocity. Therefore the torque is not only determined by the lift L but 

also by the drag D. The situation for a rotating blade is given in figure 4.4 and figure 5.1 of 

KD 35. The components of lift and drag which supply the tangential force Fu are given by 

formula 4.13. This formula can be written dimensionless as:   

 

CFu = Cl sin – Cd cos        (-) (1) 

 

For low values of , Cp will be very low and therefore the wind speed in the rotor plane will 

be almost equal to the undisturbed wind speed V. In figure 4.4 and figure 5.1 of KD 35, 2/3 V 

has to be replaced by V. If rd is replaced by r formula 5.9 of KD 35 changes into: 

 

 = arctan 1 / r       (°) (2) 

 

For the previous conditions formula 5.12 of KD 35 changes into: 

 

W =  (r
2 + 1)         (m/s) (3) 

 

The blade is now divided into n sections which are numbered from the blade tip to the blade 

root. The radius in the middle of a section is called rn. The chord in the middle of a section is 

called cn. Formula 5.7 from KD 35 changes into: 

 

r =  * rn / R      (-) (4) 
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(2) + (4) gives: 

 

 = arctan R / (rn * )       (°) (5) 

 

(3) + (4) gives: 

 

W = V  (2 * rn
2/R2 + 1)        (m/s) (6) 

 

Formula 5.2 of KD 35 can be written as: 

 

 =  –        (°) (7) 

 

Formula 6.10 of KD 35 gives the torque Qstart for a blade length k. If the blade is divided into 

a certain number of segments with each a segment length k, formula 6.10 is valid for the 

contribution Qstart of a segment. Formula 6.10 can be modified for a rotating blade for low 

values of , if the influence of the drag is incorporated and if the relative wind speed W is 

used. The term R – ½ k has to be replaced by rn. This results in: 

 

Qn = 0,75 * B * rn * (Cl sin – Cd cos) * ½V2 * (2 * rn
2/R2 + 1) * cn * k      (Nm)     (8) 

 

Qn can be made dimensionless by dividing by ½V2 * R3. This gives: 

 

Cqn = 0,75 * B * rn * (Cl sin – Cd cos) * (2 * rn
2/R2 + 1) * cn * k / R3       (-)     (9) 

 

Cq is found by taking the sum total of Cqn for all chosen segments, so:  

Cq =  Cqn        (-) (10) 

 

Formula 9 can be used for values of  laying in between  = 0 en about  = ½ opt. For  = 0 

we find that  = 90° and therefore the term (Cl sin – Cd cos is replaced by Cl and the term 

(2 * rn
2/R2 + 1) is cancelled. For  = 0 formula 9 therefore changes into: 

 

Cqn start = 0,75 * B * rn * Cl * cn * k / R3       (-) (11) 

 

For  = 0 formula 7 changes into: 

 

 =  –        (°) (12) 

 

So formula 11 and 12 can be used to calculate Cq start accurately for a rotor blade with a 

variable chord c and a variable blade angle . 

 

It is found that Cq is calculated with enough accuracy if the blade length is divided into five 

equal sections with length k.  
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3 Calculation of Cq for low values of  for the VIRYA-1.8D rotor 

 

The geometry calculations of the VIRYA-1.8D rotor are given in chapter 3 of report KD 95 

(ref. 2, in Dutch). The VIRYA-1.8D windmill has a three bladed rotor with a diameter 

D = 1.8 m (so R = 0.9 m) and a design tip speed ratio d = 4. Each blade has a constant 

chord c. Each blade is made from a steel sheet with dimensions 125 * 750 * 1.5 mm. The 

blade is 7.14 % cambered which results in a blade chord of 123,3 mm = 0,1233 m and a blade 

length of 0.75 m. So in the middle of the rotor a disk with a radius of 0.15 m is not provided 

with airfoil.  

 The blade is connected to the hub by a spoke assembly and the length of the spokes is 

0.33 m, so the overlap of the spokes and the blades is 0.18 m. The effect of this overlap on the 

aerodynamic characteristics of the airfoil is neglected concerning the calculation of Cq for low 

values of  because the airfoil is completely stalling (it is not neglected for the calculation of 

Cp max). Each blade has a constant blade angle  = 8°, so the blade is not twisted. 

 The blade is divided into five equal sections with a length k = 0.15 m. The radius at 

the centre of each section is rn, so the radii for the five sections are r1 = 0.825 m, r2 = 0.675 m, 

r3 = 0.525 m, r4 = 0.375 m and r5 = 0.225 m.  

 For the calculation of Cq, Cl- and Cd- curves for large angles of  are needed. These 

curves are given in figure 3 of report KD 96 (ref. 3) 

 For the calculation of Cqn formulas 5 and 9 are first made more specific by substitution 

of the values for B, R, cn and k.  

 

Substitution of R = 0.9 m in formula 5 gives: 



 = arctan 0.9 / (rn * )        (°) (13) 

 

Substitution of B = 3, R = 0.9 m, cn = 0.1233 m and k = 0.15 m in formula 9 gives: 

 

Cqn =  0.01817 * rn * (Cl sin – Cd cos) * (1.2346 2 * rn
2 + 1)        (-)      (14) 

 

3.1 Determination of Cq for  = 0 (Cq start) 

 

Because the blade is not twisted it is not necessary to use formulas 11 and 12 to calculate 

Cq start accurately, but formula 6.12 from KD 35 can be used (now k = 0.75 m and not 0.15 m 

because the blade is not divided into five sections). This formula is: 

 

Cq start = 0.75 * B * (R – ½k) * Cl * c * k / R3          (-) (15) 

 

Substitution of  = 8° in formula 12 gives  = 82°. Figure 3 of KD 96 and  = 82° gives 

Cl = 0.26. 

Substitution of B = 3, R = 0.9 m, k = 0.75 m, Cl = 0.26, c = 0.1233 m in formula 15 gives 

Cq start = 0.0124. 
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3.2 Determination of Cq for  = 1 
 

Substitution of  = 1 in formula 13 gives: 

 

 = arctan 0.9 / rn        (°) (16) 

 

Substitution of  = 1 in formula 14 gives: 

 

Cqn =  0.01817 * rn * (Cl sin – Cd cos) * (1.2346 rn
2 + 1)        (-)      (17) 

 

Section 1 

Substitution of rn = r1 = 0.825 m in formula 16 gives  = 47.5° 

Substitution of  = 47.5° en  = 8° in formula 7 gives  = 39.5°. 

KD 96 figure 3 for  = 39.5° gives Cl = 1.41. 

KD 96 figure 3 for  = 39.5° gives Cd = 1.13. 

Distribution of  rn = r1 = 0.825 m, Cl = 1.41, Cd = 1.13,  = 47.5° in formula 17 gives:  

Cqn = 0.00762. 

 

Section 2 

Substitution of rn = r2 = 0.675 m in formula 16 gives  = 53.1° 

Substitution of  = 53.1° en  = 8° in formula 7 gives  = 45.1°. 

KD 96 figure 3 for  = 45.1° gives Cl = 1.38. 

KD 96 figure 3 for  = 45.1° gives Cd = 1.33. 

Distribution of  rn = r2 = 0.675 m, Cl = 1.38, Cd = 1.33,  = 53.1° in formula 17 gives:  

Cqn = 0.00585. 

 

Section 3 

Substitution of rn = r3 = 0.525 m in formula 16 gives  = 59.7° 

Substitution of  = 59.7° en  = 8° in formula 7 gives  = 51.7°. 

KD 96 figure 3 for  = 51.7° gives Cl = 1.21. 

KD 96 figure 3 for  = 51.7° gives Cd = 1.52. 

Distribution of  rn = r3 = 0.525 m, Cl = 1.21, Cd = 1.52,  = 59.7° in formula 17 gives:  

Cqn = 0.00355. 

 

Section 4 

Substitution of rn = r4 = 0.375 m in formula 16 gives  = 67.4° 

Substitution of  = 67.4° en  = 8° in formula 7 gives  = 59.4°. 

KD 96 figure 3 for  = 59.4° gives Cl = 0.98. 

KD 96 figure 3 for  = 59.4° gives Cd = 1.62. 

Distribution of  rn = r4 = 0.375 m, Cl = 0.98, Cd = 1.62,  = 67.4° in formula 17 gives:  

Cqn = 0.00226. 

 

Section 5 

Substitution of rn = r5 = 0.225 m in formula 16 gives  = 76.0° 

Substitution of  = 76.0° en  = 8° in formula 7 gives  = 68.0°. 

KD 96 figure 3 for  = 68.0° gives Cl = 0.72. 

KD 96 figure 3 for  = 68.0° gives Cd = 1.77. 

Distribution of  rn = r5 = 0.225 m, Cl = 1.41, Cd = 1.13,  = 47.5° in formula 17 gives:  

Cqn = 0.00117. 
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Substitution of the calculated values for Cqn in formula 10 gives:  

 

Cq = 0.00762 + 0.00585 + 0.00355 + 0.00226 + 0.00117 = 0.02035 rounded to 0.020. 

 

This is much larger than the value found for  = 0 which was 0.0124. It can be seen that due 

to the larger radius, the outer sections distribute most to the final Cq value. 

 

3.3 Determination of Cq for  = 2 
 

Substitution of  = 2 in formula 13 gives: 

 

 = arctan 0.45 / rn        (°) (18) 

 

Substitution of  = 2 in formula 14 gives: 

 

Cqn =  0.01817 * rn * (Cl sin – Cd cos) * (4.9384 rn
2 + 1)        (-)      (19) 

 

Section 1 

Substitution of rn = r1 = 0.825 m in formula 18 gives  = 28.6° 

Substitution of  = 28.6° en  = 8° in formula 7 gives  = 20.6°. 

KD 96 figure 3 for  = 20.6° gives Cl = 1.21. 

KD 96 figure 3 for  = 20.6° gives Cd = 0.43. 

Distribution of  rn = r1 = 0.825 m, Cl = 1.21, Cd = 1.43,  = 28.6° in formula 19 gives:  

Cqn = 0.01318. 

 

Section 2 

Substitution of rn = r2 = 0.675 m in formula 18 gives  = 33.7° 

Substitution of  = 33.7° en  = 8° in formula 7 gives  = 25.7°. 

KD 96 figure 3 for  = 25.7° gives Cl = 1.22. 

KD 96 figure 3 for  = 25.7° gives Cd = 0.57. 

Distribution of  rn = r2 = 0.675 m, Cl = 1.22, Cd = 0.57,  = 33.7° in formula 19 gives:  

Cqn = 0.00808. 

 

Section 3 

Substitution of rn = r3 = 0.525 m in formula 18 gives  = 40.6° 

Substitution of  = 40.6° en  = 8° in formula 7 gives  = 32.6°. 

KD 96 figure 3 for  = 32.6° gives Cl = 1.39. 

KD 96 figure 3 for  = 32.6° gives Cd = 0.86. 

Distribution of  rn = r3 = 0.525 m, Cl = 1.39, Cd = 0.86,  = 40.6° in formula 19 gives:  

Cqn = 0.00567. 

 

Section 4 

Substitution of rn = r4 = 0.375 m in formula 18 gives  = 50.2° 

Substitution of  = 50.2° en  = 8° in formula 7 gives  = 42.2°. 

KD 96 figure 3 for  = 42.2° gives Cl = 1.40. 

KD 96 figure 3 for  = 42.2° gives Cd = 1.23. 

Distribution of  rn = r4 = 0.375 m, Cl = 1.40, Cd = 1.23,  = 50.2° in formula 19 gives:  

Cqn = 0.00333. 
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Section 5 

Substitution of rn = r5 = 0.225 m in formula 18 gives  = 63.4° 

Substitution of  = 63.4° en  = 8° in formula 7 gives  = 55.4°. 

KD 96 figure 3 for  = 55.4° gives Cl = 1.18. 

KD 96 figure 3 for  = 55.4° gives Cd = 1.56. 

Distribution of  rn = r5 = 0.225 m, Cl = 1.18, Cd = 1.56,  = 63.4° in formula 19 gives:  

Cqn = 0.00182. 

 

Substitution of the calculated values for Cqn in formula 10 gives:  

 

Cq = 0.01318 + 0.00808 + 0.00567 + 0.00333 + 0.00182 = 0.03208 rounded to 0.032. 

 

This again is larger than the value found for  = 1 which was 0.020. So Cq is increasing at 

increasing  which favours the starting behaviour. The Cp for  = 2 can be calculated with 

formula 4.5 of KD 35. It is found that Cp = 0.064 which is very low and therefore it is 

acceptable to assume that the windspeed in the rotor plane is equal to the undisturbed wind 

speed V.  

 

4 Determination of the Cp- and Cq- curves 

 

In report KD 94 it has been calculated that Cp max = 0.38 for opt = 4 and that unl = 6.4. The 

parts of the Cp- and Cq- curves between about  = 3 and  = 6.4 are drawn in accordance to 

the method as given in chapter 6.4 of KD 35. However the calculated values for  = 0,  = 1 

and  = 2 are used to draw the first part of the Cq- line. The first part of the Cp- line is 

calculated using formula 4.5 of KD 35 which can be written as: 

 

Cp = Cq *        (-) (20) 

 

The Cp- and Cq- curves found this way are given in figure 1 and 2. 
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fig. 1  Cp- curve for VIRYA-1.8D rotor for wind speed perpendicular to rotorplane ( = 0°) 
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fig. 2  Cq- curve for VIRYA-1.8D rotor for wind speed perpendicular to rotorplane ( = 0°) 
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